CH033 - Chemistry 3

Unit code: CH033 | Study level: TAFE
N/A
Footscray Nicholson
N/A
Overview
Enquire

Overview

The global demand for energy and materials is increasing with world population growth. In this unit students explore energy options and the chemical production of materials with reference to efficiencies, renewability and the minimisation of their impact on the environment.

Students compare and evaluate different chemical energy resources, including fossil fuels, biofuels, galvanic cells and fuel cells. They investigate the combustion of fuels, including the energy transformations involved, the use of stoichiometry to calculate the amounts of reactants and products involved in the reactions, and calculations of the amounts of energy released and their representations. Students consider the purpose, design and operating principles of galvanic cells, fuel cells and electrolytic cells. In this context they use the electrochemical series to predict and write half and overall redox equations, and apply Faraday’s laws to calculate quantities in electrolytic reactions.

Students analyse manufacturing processes with reference to factors that influence their reaction rates and extent. They investigate and apply the equilibrium law and Le Chatelier’s principle to different reaction systems, including to predict and explain the conditions that will improve the efficiency and percentage yield of chemical processes. They use the language and conventions of chemistry including symbols, units, chemical formulas and equations to represent and explain observations and data collected from experiments, and to discuss chemical phenomena.

This unit is delivered in Year 12.

Assessment

For Melbourne campuses

Assessment tasks will be designed to reinforce and extend knowledge in accordance with each unit’s learning outcomes, including the setting of practical application tasks designed to provide evidence of competence outcomes, within periodic and scheduled timelines. Students will be expected to demonstrate the following knowledge:

Outcome 1
On completion of this unit the student should be able to compare fuels quantitatively with reference to combustion products and energy outputs, apply knowledge of the electrochemical series to design, construct and test galvanic cells, and evaluate energy resources based on energy efficiency, renewability and environmental impact.

Outcome 2
On completion of this unit the student should be able to apply rate and equilibrium principles to predict how the rate and extent of reactions can be optimised, and explain how electrolysis is involved in the production of chemicals and in the recharging of batteries.

Required reading

The qualified trainer and assessor will provide teaching and learning materials as required in the form of workbooks produced by the Polytechnic and/or via the Polytechnic e-learning system.

As part of a course

This unit is studied as part of the following course(s):

Search for units, majors & minors