ADMISSION REQUIREMENTS
Students entering an completion of VCE must have units 3 and 4, with a study score of at 20 in English (any) and in Mathematical Methods, Specialist Mathematics or Further Mathematics. TAFE Diplomas and Advanced Diplomas in Engineering and Technology study areas are also accepted.

OVERSEAS EXCHANGE PROGRAM
Victoria University has student exchange agreements with universities around the world including: – the USA, Canada, Mexico, United Kingdom as well as European and Asian countries.

Students who study abroad gain the experience of living in a different culture and environment, develop a greater sense of self-responsibility, independence and a wider cultural understanding. Overseas study can also assist in the development of a clearer perception of a future career in Engineering as well as a stronger determination to succeed.

INTERNATIONAL STUDENTS
For specific information relating to courses, entry requirements and application procedures, please visit the web site for international students:
www.vu.edu.au/international

OR
Victoria University International (VUI) on +61 3 9919 1164

ADMISSION REQUIREMENTS
Students entering an completion of VCE must have units 3 and 4, with a study score of at 20 in English (any) and in Mathematical Methods or Specialist Mathematics. TAFE Diplomas and Advanced Diplomas in Engineering and Technology study areas are also accepted.

HOW DO I APPLY?
Applications should be made through VTAC:
40 Park Street, South Melbourne, 3205
PHONE: 03 9690 7977
WEB: www.vtac.edu.au
www.vu.edu.au/admissions or e-mailing admissions@vu.edu.au

CONTACT US
FACULTY OF HEALTH, ENGINEERING AND SCIENCE
SCHOOL OF ENGINEERING AND SCIENCE
VICTORIA UNIVERSITY
FOOTSCRAY PARK CAMPUS
PO BOX 14428 MELBOURNE VIC 8001
PHONE: 03 9919 4703
FAX: 03 9919 4908

OR
FACULTY OF HEALTH, ENGINEERING AND SCIENCE
STUDENT ADMINISTRATION
PHONE: 03 9919 4516
FAX: 03 9919 4803

OR
VISIT THE WEBSITE
WWW.VU.EDU.AU

This publication is an information document for future students of Victoria University, every reasonable effort has been made to ensure that the information in this document is accurate, however it may be subject to change. April 2009. 2720.4.09.
WHAT IS AN ENGINEER?
Electrical and Electronic Engineers: —
- Are responsible for electricity generation and distribution
- Design complex electronic equipment
- Manage large industrial manufacturing plant
- Research and develop new energy sources
- Design and manage our Telecommunications infrastructure including telephones, radio, TV and the internet

WHAT IS PBL?
Problem Based Learning — students form teams of about five, and work together on real-life industry and community problems. And this real-world learning begins right from first year, so you’re applying theory to practice all the way through your study, not just in your final years.

WHAT IS VU?
- VU works with major employers in Victoria;
- VU is the only University in Victoria, which offers the Problem Based Learning across the entire course;
- Most of teaching staff have had extensive industrial experience, which adds aspects of practicality;
- VU has one of the best teacher to student ratio in Australia;
- Practical knowledge and ability to start work without additional training on the job is well regarded by the employers, gives another advantage to the graduates of VU when applying for jobs;
- 25% of learning at VU is directed towards learning in to Workplace and Community (LiWC), which makes knowledge and learning experience gained at VU very practical and graduates are work ready and require less or no orientation training when starting new job.

WHY CHOOSE VU?
Bachelor of engineering Science in electrical and electronic engineering cricos no: 057278J
Course code: eBes (3 year course)

WHY CHOOSE THIS COURSE? EMPLOYMENT OPPORTUNITIES
An engineer can:
- Create the next generation computers
- Build efficient cars and planes
- Create robots to increase manufacturing
- Create new technology to make manufacturing cheaper and cleaner
- Operate machines
- The course is delivered using Problem Based Learning (PBL) methodology which uses real world problems as a significant part of the learning process;
- Graduates can find employment in a number of industries:

1. EMBEDDED SYSTEMS
Design, test and build microprocessor based controllers for intelligent equipments and machines such as automobile engine management system, brake system, washing machine, remote data logger etc.

2. ELECTRONIC CIRCUIT BOARD DESIGN
Simulate and test complex electronic circuit boards using latest CAD software prior to out sourced manufacturing.

3. FACTORY AUTOMATION
Design, install, operate and maintain automatic control systems for factory production.

4. COMPUTER NETWORKING
Plan, design, install, operate and maintain computer networks for home, office, school etc.

5. POWER ELECTRONICS
Design and maintain power electronic systems for efficient operation of high power machinery.

COURSE STRUCTURE
First year subjects in electrical, electronic, computing, mathematics and physics studies are designed to provide a firm foundation for a wide range of higher level subjects in later years of the course.

In years two and three the students will be introduced to the tools, techniques and theories of Embedding Systems, Networking, Automation, Analog and Power Electronics. The course has a focus on practical applications and design and project work forms a significant component of the total program. Students will apply the theories and techniques learned in the course to both team projects as well as an individual project in year 3 of the course.

Student completing their studies at an appropriate standard may be granted up to two years credit into the Bachelor of Electrical and Electronic Engineering degree. In addition those completing Year 1 of the program will be able to transfer to Year 2 of the Bachelor of Engineering in Electrical and Electronic Engineering course.

PATHWAYS
TAFE students may articulate into the program. Students who have completed a TAFE Advanced Diploma in a related discipline will be granted up to 96 CP (credit points) of exemption; which is equivalent to 1 year of full time study.

<table>
<thead>
<tr>
<th>COURSE STRUCTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR 1</td>
</tr>
<tr>
<td>SEM 1 Enabling Sciences 1A</td>
</tr>
<tr>
<td>SEM 2 Enabling Sciences 1B</td>
</tr>
</tbody>
</table>

| YEAR 2 |
| SEM 1 Operating Systems and Tools | Introduction to Computer Control and Automation | Systems and Applications 2C | Engineering Design and Practice 2A |
| SEM 2 Introduction to Computer Network A | Industrial Control Systems and Electronics Manuf. Automation | Systems and Applications 2D | Engineering Design and Practice 2B |

| YEAR 3 |
| SEM 1 Engineering Project 3A | Analog Electronics A | Digital Systems Design A | Embedded Computer System Design | Introduction to Computer Networks B | Business Elective |
| SEM 2 Engineering Project 3B | Analog Electronics B | Introduction to Electrical Machines | Power Electronics | Network Software and Internet Programming | Elective(s) |